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Abstract Six lines and three testers in bread wheat were evaluated for fifteen quantitative traits along with their 18 

crosses. Significant differences were observed for both general combining ability and specific combining ability 

effects. RAJ-2184 found to be good general combiner for most of the traits. The cross combinations namely, DPW-

621-50 × CPAN-1796 and RAJ-2184 × WL-410 were found to be most significant for yield traits. On the basis of 

per se performance and estimates of heterosis, the cross PBW-65×WL-410 was identified as most promising 

followed by PBW-65 × WH-416, PBW-65 × CPAN-1796, DPW-621× CPAN-1796 and DPW-621-50 × WH-416 

for grain yield per plant. The above best parents and best crosses can be used in hybridization and heterosis 

breeding, respectively. 
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Introduction 
Wheat belongs to the genus Triticum of the family 

Graminae and its origin is believed to be the Middle 

East Region of Asia (Lupton, 1987). Three species of 

wheat viz., Triticum aestivum L. (bread wheat), 

Triticum durum Desf. (Macaroni wheat) and Triticum 

dicoccum Schulb. (Emmer wheat) are grown 

commercially in India, covering 86, 12, and 2 per cent 

of the total area under wheat, respectively (Ukaniet 

al.2015). Wheat is one of the most important and 

widely cultivated crops in the world, used mainly for 

human consumption and support nearly 35% of the 

world population (Mohammadi-joo et al. 2015) and 

providing 20% of the total food calories. 

The yield of wheat and the end-use quality is 

dependent upon the genotype, environment and their 

interaction (Randhawa et al. 2002). The area under 

wheat cultivation in world during 2016-17 was 221.56 

million hectare, production 750.4 million metric tons 

and grain yield 3.39 metric tons per hectare (USDA, 

2017). In India during 2017-18, wheat is grown on 

31.86 million hectares with an average production of 

95 million tons and average yield of 3.0 metric ton per 

hectare (Ministry of Agriculture, Food Corporation of 

India, 2018). India has second position in both area 

and production after China (Jaiswal et al. 2017). 

       Heterosis breeding provides the way to overcome 

the yield barriers. Wheat production can be enhanced 

through the development of new cultivars having 

wider genetic base and better performance under 

various agro-climatic conditions. Exploitation of 

heterotic effects is mainly accredited to cross 

pollinated crops but now-a-days the incidence is 

common in self-pollinated crops such as wheat, 

providing an option for commercially utilizing 

heterosis in wheat (Singh et al., 2004; Kumar et al., 

2011). According to Rauf et al. (2012) manipulation 

of heterosis is an important strategy for increasing the 

yield potential of wheat. The study of heterosis helps 

the breeders in eliminating less productive crosses in 

F1 generation itself. The knowledge of combining 

ability is useful to assess differences among the 

genotypes and also, elucidate the nature and 

magnitude of gene actions involved. It has an 

important role to select parents and crosses and it 

helps to decide breeding methods to be followed to 

choose desirable individuals (Salgotra et al. 2009).  

Plant breeders focus on development of high yielding 

wheat cultivars by crossing good general combining 

lines and selecting desirable transgressive segregants 

from resulting hybrids for grain yield and other traits. 

Some researchers determined that the general 

combining ability effects for yield and other characters 

have played a significant role in selecting parents for 

grain yield (Kant et al., 2001; Akbar et al., 2009). 

Materials and Methods 

The experimental material consisted of six lines 

(PBW-65, DPW-621-50, MLKS-11, KSML-3, PBW-

291 and RAJ-2184) and three testers (WH-416, 
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CPAN-1796 and WL-410) crossed in a Line × Tester 

mating design. The variety PBW-725 of Bread wheat 

is used as check variety. The resultant 18 hybrids 

along with their nine parents were evaluated in 

Randomized Block Design with three replications 

atResearch Farm, Department of Agriculture, Mata 

Gujri College, Fatehgarh Sahib during Rabi 2017-18. 

This place is situated between 30̊-27’ and 30-̊46’ 

latitudes and 76-̊04’ and 76-̊38’E longitude and a mean 

height of 247 meters above sea level. Row to row and 

plant to plant spacing of 22.5×5 cm was maintained by 

thinning, respectively. A sample of five representative 

plants were taken from each genotype for recording 

data on different yield characters.The data pertaining 

to various characters were analysed as per the 

procedure of RBD given by Panse and Sukhatme 

(1978). The combining ability analysis was performed 

for a Line × Tester mating design as per the method 

suggested by Kempthorne (1957).  

Results and Discussion 

Analysis of variance for combining ability 

Analysis of variance for combining ability, for line 

effect showed significant variance only for number of 

grains per plant shown in table 1. None of the 

character exhibited significant variance for tester 

effect. Line × Tester effect showed positive 

significance for all the characters except number of 

productive tillers per plant, number of spikelets per 

spike, number of grains per plant and grain yield per 

plant. The similar results were reported by Rajput and 

Kandalkar (2018). 

General Combining Ability (gca) and Specific 

Combining Ability (sca) analysis 

The results of gca effects are given in table2. The 

parents namely, PBW-65 was significant for plant 

height and number of grains per plant, DPW-621-50 

for days to booting, number of grains per spike and 

biological yield per plant, MLKS-11 for plant height, 

peduncle length, number of grain per spike and 

biological yield per plant, KSML-3 for days to 

heading, days to anthesis, number of grain per spike, 

test weight and biological yield per plant. PBW-291 

for plant height, peduncle length and biological yield 

per plant, RAJ-2184 for biological yield per plant, 

WH-416 for number of grains per spike and biological 

yield per plant,CPAN-1796 for number of grains per 

spike and biological yield per plant, WL-410 for 

number of grains per spike. Similar finding were also 

reported by Aslam et al., 2014 and Ishaq et al. 2018. 

The results of specific combining ability (sca) effects 

are presented in table3.The cross combinations 

namely, DPW-621-50 × CPAN-1796 and RAJ-2184 × 

WL-410 significant for most of the yield traits.The 

similar findings were reported by Lohithaswa et 

al.(2013) and Singh et al. (2019). 

 

Estimation of Heterosis 

      Exploitation of hybrid vigour for yield characters 

content provides an additional opportunity to improve 

and develops hybrids for yield traits along with 

adaptability for specific production environments. 

Estimates of mean squares for all the characters 

studied were highly significant indicating wide genetic 

differences among the genotypes. The heterotic effect 

in F1 generation over better parent and standard check 

are presented in table 4, 5, 6 and 7. 

      Minimum number of days to booting and days to 

heading show early maturity of crop plant. All 18 

cross combinations exhibited early maturity over 

commercial check. These findings are in accordance 

with the Ribadia et al. (2007), Ismail (2015), Thomas 

et al. (2017) and Rajput and Kandalkar (2018). 

    

     For days to anthesis, eight cross combinations 

revealed heterobeltiosis in negative maximum by 

DPW 621-50 × WL 410 (-7.37), while all cross 

combinations showed significant negative heterosis 

over commercial check. Similar findings were also 

noted by Murugan and Kannan (2017).  

  

      For number of productive tillers per plant, PBW-

65 × WL-410 expressed highest positive  heterosis 

(39.67) and none of the cross showed significant 

negative heterosis over better parents. The commercial 

check revealed neither significant positive heterosis 

nor significant negative for number of productive 

tillers per plant.These results are in accordance with 

the Ilker et al. (2010), Desale and Mehta (2013). 

       Two cross combinations showed significant 

positive heterobeltiosis as PBW-65 × WL-410 (15.01) 

to MLKS 11 × CPAN 1796 (17.54). For standard 

heterosis fourteen crosses exhibited significant 

positive heterosis for spike length, as reported earlier 

byPatilet al. (2011) and Rajput and Kandalkar (2018).  

       Significant negative heterobeltiosis for peduncle 

length was exhibited by three crosses, out of eighteen 

crosses was MLKS-11 × WH-416 (-21.52) to MLKS-

11 × WL-410 (-15.86). Significant negative heterosis 

over standard check was exhibited by eleven cross 

combinations ranged from KSML-3 × WL-410 (-

16.02) to (-8.35). The present findings are similar with 

the findings by Farooq et al. (2014).  

      Heterobeltiosis for days to maturity observed six 

cross combinations exploited negative heterosis with 

maximum range of MLKS-11 × WH-416 (-2.64) 

whereas, useful heterosis to be significant negative for 

all cross combinations. The following findings showed 
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similar results with Thomas et al. (2017), Prakash et 

al. (2006). 

      The plant height is an important trait by which 

growth and vigour of plants are measured. A 

significant and high degree of heterosis for plant 

height was observed in comparison to the better parent 

and the commercial variety as well. The highest 

significant positive heterosis over better parent is 

exhibited by MLKS-11 × CPAN-1796 (19.86). Four 

cross combinations over better parent exhibited 

negative significant heterobeltiosis ranging from 

MLKS-11 × WL-410 (-8.50)to DPW-621-50 × CPAN-

1796 (-15.39). Useful heterosis observed significant 

positive for two cross combinations ranged from RAJ-

2184 × WH-416 (5.92) to PBW-65 × CPAN-1796 

(7.09) while, five cross combinations exhibited 

significant negative useful heterosis as PBW-291 × 

CPAN-1796 (-6.12) to MLKS-11 × WH-416 (-11.29) 

indicating the presence of both additive gene effects in 

these crosses for plant height. Similar findings are 

done by Kumar and Kerkhi (2015).    

Eight cross combinations exhibited significant positive 

heterobeltiosis for number of spikelets per spike as 

PBW-291 × CPAN-1796 (9.10) and PBW-65 × WH-

416 (19.81) while, none of cross combinations were 

found to be significant negative heterotic effect over 

better parent. For standard heterosis fourteen cross 

combinations exhibited significant positive while, 

none of cross combinations were found to be 

negatively significant useful heterosis varies from over 

commercial check for number of spikelets per spike. 

The present study agrees with findings of Zaazaa et al. 

(2012).      

  

      Five crosses exhibited both significant positive 

heterosis over better parent as well as all eighteen 

cross combinations exhibited significant positive 

heterosis over standard check RAJ-2184 × WL-410 

(5.26) to MLKS-11 × CPAN-1796 (38.55) over 

commercial check for number of grains per spike. The 

present study corresponds with the findings reported 

with Shrief et al. (2017). 

       The number of grains per plant is an important 

trait. For heterobeltiosis, thirteen cross combinations 

expressed highest significant positive heterosis over 

better parent. Cross PBW-65×WL-410 (45.57) showed 

that among hybrids was at highest. All the eighteen 

cross combinations showed positive significant 

heterosis over standard check. Similar type of 

heterosis reported by Maluszynski et al. (2001). 

      Three F1 hybrids exhibited significant positive 

heterosis over better parent were from PBW-65 × 

WH-416 (6.91) to PBW-291 × CPAN-1796 (11.44) 

for test weight. Thirteen cross combinations exhibited 

significant negative heterosis over standard check                             

PBW-65 × CPAN-1796 (-13.90) to PBW-65 × WL-

410 (-5.37). The present study agrees with reporting of 

Seboka et al. (2009), Thomas et al. (2017), Murugan 

and Kannan (2017).   
       RAJ-2184 × WH-410 (18.74) expressed highest 

significant positive heterosis over better parent. 

Fourteen cross combinations showed significant 

positive heterosis over standard check for biological 

yield. The results of this study are in agreement with 

Seboka et al. (2009), Shrief et al. (2017), Rajput and 

Kandalkar (2018).    

   

      In the present investigation the grain yield per 

plant increased mainly due to increase in average 

number of tillers per plant and number of spikelets per 

spike. Fourteen cross combinations showed significant 

positive heterobeltiosis ranged RAJ-2184 × WH-416 

(26.77) to PBW-65 × WH-416 (47.92). Two cross 

combinations exhibited significant positive heterosis 

over standard check varied from KSML-3 × WL-410 

(23.78) to MLKS-11 × WH-416 (34.19). These 

findings are in accordance with the results reported by 

Lal et al. (2013), Shrief et al. (2017), Thomas et al. 

(2017).  

Conclusion 

It may be concluded that RAJ-2184 is good general 

combiner andDPW-621-50 × CPAN-1796 and RAJ-

2184 × WL-410 is a best specific combination for 

most of the yield contributing traits.On the basis of per 

se performance and estimates of heterosis, the PBW-

65 × WH-416 followed by PBW-65 × CPAN-1796, 

DPW-621× CPAN-1796 and DPW-621-50 × WH-

416for seed yield per plant, hence could be evaluated 

further to exploit the heterosis and utilized in future 

breeding programme to obtain desirable and superior 

genotypes. 
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Table 1.ANOVA for combining ability of line × tester analysis in bread wheat (Triticum aestivum L.) 

 

Conti……… 

Source of variation d.f. Number of 

spikelets per 

spike 

Number of 

grains per spike 

Number of 

Grains per 

plant 

Test weight Biological yield per 

plant (g) 

Grain yield per 

plant (g) 

Replications 2.00 2.28 1.96 1243.73 1.02 3.85 4.63 

Crosses 17.00 1.39 59.13** 10044.71 5.07** 32.20** 14.71 

Line effect 5.00 1.75 129.91 20898.60* 4.19 33.32 22.19 

Tester effect 2.00 1.39 42.74 8496.11 7.02 19.90 23.94 

Line × Tester Eff. 10.00 1.22 27.02** 4927.49 5.13** 34.11** 9.12 

Error 34.00 1.25 1.34 7442.58 1.47 3.20 17.34 

Total 53.00 1.33 19.90 8043.30 2.61 12.53 16.02 

 

 

 

 

 

 

 

Source of variation d.f. Days to 

booting 

Days to heading Days to 

Anthesis 

Number of 

productive tillers 

per plant 

Spike length 

(cm) 

Peduncle 

length (cm) 

Days to 

maturity 

Plant 

height (cm) 

Replications 2.00 5.92 3.57 3.57 0.35 0.21 1.40 3.63 1.58 

Crosses 17.00 14.31** 16.57** 16.57** 1.57 4.20** 16.04** 17.94** 101.82** 

Line effect 5.00 9.97 10.72 10.72 2.33 1.97 16.18 12.96 84.07 

Tester effect 2.00 2.42 5.60 5.60 0.19 0.71 15.47 3.89 31.69 

Line × Tester Eff. 10.00 18.86** 21.69** 21.69** 1.47 6.01** 16.08** 23.24** 124.72** 

Error 34.00 3.24 2.87 2.87 2.12 0.84 2.95 2.80 2.72 

Total 53.00 6.89 7.29 7.29 1.88 1.89 7.09 7.68 34.46 
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Table 2.Estimates for general combining ability of line × tester analysis in bread wheat (Triticum aestivum L.) 

 
Character  

 

 

Genotype 

Days to booting Days to 
heading 

Days to 
anthesis 

No. of 
productiv

e tillers 

per plant 

Spike 
length 

(cm) 

Peduncle 
length 

(cm) 

Days to 
maturity 

Plant 
height 

(cm) 

No. of 
spikelets 

per spike 

No. of 
grains 

per 

spike 

No. of 
Grains 

per plant 

Test 
weight 

Biological 
yield per 

plant (g) 

Grain 
yield 

per 

plant 
(g) 

PBW 65 0.32 0.35 0.50 0.45 0.06 1.17 0.76 2.83* 0.18 1.98** 52.84 0.03 1.18* 2.03 

DPW-621-50 1.21* 0.84 1.06 0.41 -0.29 -0.63 1.01 1.65 -0.10 -1.42** -6.52 0.37 -0.72** 0.07 

MLKS-11 -0.52 0.05 0.00 0.03 -0.25 -1.60* -0.05 -4.21** -0.30 3.50** 43.66 -0.17 2.06** 1.54 

KSML-3 1.05 1.29* 1.19* -0.65 0.61 0.01 1.14 -0.59 0.08 2.76** 22.24 -1.27** 1.73** -0.27 

PBW-291 -0.56 -0.90 -1.05 -0.61 0.47 1.96** -1.10 -2.82* -0.57 -0.02 -49.79 0.48 -1.73** -1.51 

Raj-2184 -1.51** -1.63** -1.71** 0.37 -0.60 -0.91* -1.76* 3.15** 0.71* -6.81** -62.43** 0.56 -2.53** -1.86 

WH-416 -0.36 -0.55 -0.49 0.10 0.04 0.43 -0.44 1.27 -0.01 1.77** 24.97 0.30 1.05* 1.25 

CPAN-1796 0.37 0.57 0.48 -0.10 0.17 0.63 0.48 0.11 0.28 -1.07** -10.37 -0.72** -1.05* -1.03 

WL-410 -0.01 -0.02 0.01 0.01 -0.22 -1.06 -0.04 -1.38 -0.27 -0.70** -14.59 0.41 0.01 -0.22 

CD 95% GCA(Line) 1.21 1.16 1.16 1.00 0.63 1.30 1.35 2.24 0.70 0.71 56.80 0.81 1.14 2.64 

CD 95% GCA(Tester) 0.86 0.82 0.82 0.70 0.45 0.92 0.96 1.58 0.49 0.50 40.17 0.58 0.81 1.87 
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Table 3: Estimates for specific combining ability of line × tester analysis in bread wheat (Triticum aestivum L.) 

Characters 
 

 

 Genotype 

Days to 
booting 

Days to 
heading 

Days to 
anthesis 

No. of 
productive 

tillers per 

plant 

Spike 
length 

(cm) 

Peduncle 
length 

(cm) 

Days to 
maturity 

Plant 
height 

(cm) 

No. of 
Spikelets 

per spike 

No. of 
grains 

per 

spike 

No. of 
Grains per 

plant 

Test 
weight 

Biological 
yield per 

plant (g) 

Grain 
yield per 

plant (g) 

PBW 65×WH-416 -1.10 -0.76 -0.61 -0.51 0.39 0.04 -0.38 -1.99 0.56 -1.62* -25.00 1.45* 1.01 0.41 

PBW 65×CPAN-1796 1.68 1.46 1.55 0.40 -1.26* -1.97 1.57 5.33** 0.23 -1.35* 18.84 -1.92** -0.09 -1.13 

PBW 65×WL-410 -0.58 -0.70 -0.94 0.11 0.87 1.93 -1.19 -3.33 -0.79 2.97** 6.16 0.47 -0.92 0.72 

DPW-621-50×WH-416 1.78 1.80 1.89 0.44 -2.69** -1.73 1.84 3.23 0.09 -0.01 40.38 -0.82 0.41 0.79 

DPW-621-50×CPAN-1796 -2.56* -2.41* -2.84** 0.44 1.34* 1.40 -2.84** -2.62 -0.70 -1.69** 2.62 0.45 4.62** 0.49 

DPW-621-50×WL-410 0.78 0.61 0.95** -0.88 1.35* 0.34 1.00 -0.61 0.60 1.70** -43.00 0.37 -5.03** -1.28 

MLKS-11×WH-416 0.74 -0.45 -0.48** 0.96 -0.21 -1.51 -0.53 -6.91** -0.42 1.22 37.17 1.04 2.40* 2.38 

MLKS-11×CPAN-1796 2.41* 3.46** 3.49 -1.23 0.53 0.62 3.48** 10.85** 0.69 3.18** -32.59 -0.13 0.41 -1.38 

MLKS-11×WL-410 -3.15** -3.01** -3.00 0.27 -0.32 0.89 -2.95* -3.94* -0.28 -4.40** -4.59 -0.91 -2.81** -1.00 

KSML-3×WH-416 -0.34 0.25 0.14 -0.33 0.23 -0.30 0.09 6.42** 0.05 -3.15** -37.54 -0.39 -1.47 -1.83 

KSML-3×CPAN-1796 -1.93 -2.49* -2.06* -0.06 -0.11 2.04 -2.06 -5.41** 0.01 0.84 -21.48 -0.07 -3.07** -0.82 

KSML-3×WH-410 2.27* 2.24* 1.92 0.39 -0.12 -1.74 1.97 -1.01 -0.06 2.31** 59.02 0.46 4.54** 2.65 

PBW-291×WH-416 -0.82 -0.70 -0.92 -0.50 0.91 4.33** -0.97 -3.44 -0.78 2.14** 7.77 -1.26 0.14 -0.72 

PBW -291×CPAN-1796 2.68* 2.69* 2.89** 0.17 -0.78 -1.87 2.88* -2.04 0.34 -2.52** -16.84 2.19** -1.29 1.14 

PBW -291×WL-410 -1.85 -1.99 -1.96 0.33 -0.13 -2.46* -1.91 5.48** 0.43 0.38 9.07 -0.93 1.16 -0.42 

RAJ-2184×WH-416 -0.26 -0.15 -0.01 -0.06 1.38* -0.83 -0.06 2.69 0.49 1.42* -22.79 -0.02 -2.50* -1.02 

RAJ-2184×CPAN-1796 -2.28* -2.70** -3.03** 0.29 0.28 -0.21 -3.04* -6.10** -0.57 1.53* 49.45 -0.52 -0.57 1.70 

RAJ-2184×WL-410 2.54* 2.85** 3.04** -0.23 -1.66** 1.04 3.09* 3.41 0.08 -2.95** -26.66 0.54 3.07** -0.68 

CD 95% SCA 2.10 2.01 2.01 1.73 1.10 2.25 2.34 3.87 1.21 1.23 98.39 1.41 1.98 4.58 
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Table 4: Mean performance of F1 hybrids and extent of heterosis in bread wheat for days to booting, days to heading, days to anthesis, number of productive 

tillers per plant 

 

 

 

 

 

 

 

 

Crosses Days to booting Days to heading Days to anthesis Number of productive tillers per plant 
Mean Better 

parent 
Standard 

check 
Mean Better 

parent 
Standard 

check 
Mean Better 

parent 
Standard 

check 
Mean Better 

parent 
Standard 

check 

PBW 65 × WH-416 87.93 -2.41 -8.06** 94.88 -3.07* -8.32** 101.54 -2.46 -9.43** 13.44 26.47* -2.68 

PBW 65 × CPAN-1796 91.44 6.91** -4.39** 98.20 3.16* -5.11** 104.67 2.39 -6.64** 14.14 28.73* 2.39 

PBW 65 × WL-410 88.80 0.68 -7.16** 95.47 -2.32 -7.75** 101.71 -0.54 -9.28** 13.97 39.67** 1.11 

DPW-621-50 × WH-416 91.70 -5.33** -4.13* 97.93 -4.62** -5.37** 104.60 -3.94** -6.70** 14.36 18.98 3.93 

DPW-621-50 × CPAN-1796 88.10 -9.05** -7.89** 94.83 -7.64** -8.37** 100.84 -7.39** -10.05** 14.15 17.29 2.46 

DPW-621-50 × WL-410 91.05 -6.00** -4.81** 97.27 -5.25** -6.00** 104.16 -4.34** -7.09** 12.94 7.24 -6.32 

MLKS-11 × WH-416 88.93 -1.31 -7.02** 94.88 -3.06* -8.31** 101.17 -2.82* -9.76** 14.49 20.88* 4.90 

MLKS-11 × CPAN-1796 91.33 2.85 -4.52** 99.91 5.68** -3.46* 106.10 5.96** -5.36** 12.09 0.89 -12.45 

MLKS-11 × WL-410 85.39 -3.83* -10.72** 92.86 -4.99** -10.27** 99.15 -3.05* -11.57** 13.71 14.40 -0.72 

KSML-3 × WH-416 89.42 -0.76 -6.51** 96.83 -1.07 -6.43** 102.98 -1.08 -8.15** 12.52 17.81 -9.34 

KSML-3 × CPAN-1796 88.56 4.77** -7.41** 95.20 0.11 -8.00** 101.75 -1.88 -9.24** 12.59 14.62 -8.83 

KSML-3 × WL-410 92.37 4.73 -3.42* 99.35 1.66 -3.99** 105.26 1.50 -6.12** 13.16 25.49* -4.73 

PBW-291 × WH-416 87.32 -3.09 -8.71** 93.68 -9.51** -9.47** 99.68 -5.84** -11.09** 12.39 -0.85 -10.28 

PBW -291 × CPAN-1796 91.55 2.49 -4.28** 98.19 -5.16** -5.11** 104.46 -1.33 -6.83** 12.86 2.85 -6.93 

PBW -291 × WL-410 86.64 -3.01 -9.41** 92.92 -10.25** -10.21** 99.14 -6.35** -11.57** 13.13 5.07 -4.92 

RAJ-2184 × WH-416 86.94 -3.51* -9.10** 93.51 -4.46** -9.64** 99.93 -4.01** -10.87** 13.81 25.13* -0.02 

RAJ-2184 × CPAN-1796 85.66 -0.55 -10.44** 92.07 -2.22 -11.03** 97.88 -0.53 -12.70** 13.96 26.49* 1.06 

RAJ-2184 × WL-410 90.09 2.14 -5.81** 97.04 -0.71 -6.23** 103.48 1.19 -7.70** 13.55 22.80* -1.88 

S.E±  1.46 1.46  1.40 1.40  1.40 1.40  1.20 1.20 

C.D at 5%  2.97 2.97  
2.84 2.84 

 
2.84 2.84 

 2.44 2.44 

C.D at 1%  3.99 3.99  
3.82 3.82 

 
3.82 3.82 

 3.28 3.28 

57 

58 



Agriways  8 (1) :50-61. 2020 

 

Table 5: Mean performance of F1 hybrids and extent of heterosis in bread wheat for spike length (cm), peduncle length (cm), days to maturity, plant height 

 

 

 

 

Crosses Spike length Peduncle length Days to maturity Plant height (cm) 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

PBW 65 × WH-416 12.72 -2.30 26.27** 36.61 4.50 -4.43 126.90 -1.42 -16.75** 99.36 2.06 0.84 

PBW 65 × CPAN-1796 11.21 3.83 11.25 34.79 -4.01 -9.16* 129.78 1.18 -14.86** 105.53 8.40** 7.09* 

PBW 65 × WL-410 12.95 15.01* 28.51** 37.00 5.31 -3.39 126.49 -1.79 -17.02** 95.38 -2.03 -3.21 

DPW-621-50 × WH-416 9.30 -30.59** -7.67 33.03 -8.72 -13.77** 129.38 -8.15** -15.13** 103.41 -9.24** 4.94 

DPW-621-50 × CPAN-1796 13.47 0.50 33.68** 36.36 0.31 -5.07 125.62 -10.82** -17.59** 96.41 -15.39** -2.16 

DPW-621-50 × WL-410 13.09 -2.36 29.87** 33.61 -7.13 -12.26** 128.94 -8.46** -15.41** 96.92 -14.94** -1.64 

MLKS-11 × WH-416 11.82 -9.21 17.33* 32.29 -21.52** -15.70** 125.95 -2.64* -17.38** 87.41 0.73 -11.29** 

MLKS-11 × CPAN-1796 12.69 17.54* 25.93** 34.62 -15.86** -9.62* 130.88 1.17 -14.14** 104.01 19.86** 5.55 

MLKS-11 × WL-410 11.46 1.75 13.70 33.19 -19.33** -13.34** 123.93 -4.21** -18.70** 87.73 -8.50** -10.97** 

KSML-3 × WH-416 13.11 -1.75 30.14** 35.10 8.75 -8.35* 127.76 -1.24 -16.19** 104.36 11.81** 5.91* 

KSML-3 × CPAN-1796 12.91 -3.27 28.12** 37.64 3.84 -1.73 126.53 -2.19 -17.00** 91.37 -2.10 -7.27* 

KSML-3 × WL-410 12.51 -6.27 24.15** 32.17 -8.45 -16.02** 130.04 0.52 -14.69** 94.29 -1.66 -4.32 

PBW-291 × WH-416 13.66 4.91 35.59** 41.69 42.94** 8.84* 124.46 -3.32* -18.35** 92.26 -2.93 -6.37* 

PBW -291 × CPAN-1796 12.11 8.42 20.18* 35.68 -1.55 -6.84 129.24 0.76 -15.22** 92.51 -2.67 -6.12* 

PBW -291 × WL-410 12.37 9.83 22.73** 33.40 -4.95 -12.81** 123.92 -3.79** -18.71** 98.54 2.77 0.00 

RAJ-2184 × WH-416 13.06 -0.28 29.61** 33.65 -7.47 -12.14** 124.71 -3.13* -18.19** 104.37 11.50** 5.92* 

RAJ-2184 × CPAN-1796 12.09 -7.66 20.01* 34.47 -5.21 -10.00* 122.66 -4.37** -19.54** 94.42 0.87 -4.18 

RAJ-2184 × WL-410 9.77 -25.43** -3.08 34.03 -6.44 -11.17** 128.26 -0.42 -15.86** 102.44 6.84 3.96 

S.E±  0.76 0.76  1.57 1.57  1.63 1.63  2.70 2.70 

C.D at 5%  1.55 1.55  3.18 3.18  3.31 3.31  5.48 5.48 

C.D at 1%  2.09 2.09  4.27 4.27  4.44 4.44  7.35 7.35 
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Table 6: Mean performance of F1 hybrids and extent of heterosis in bread wheat for number of spikelets per spike, number of grains per spike, number of grains per plant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crosses Number of spikelets  per spike Number of grains per spike Number of grains per plant 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

PBW 65 × WH-416 22.17 19.81** 16.29** 66.17 3.77** 29.98** 929.25 38.48** 33.32** 

PBW 65 × CPAN-1796 22.13 12.34** 16.07** 63.61 0.77 24.95** 937.74 35.23** 34.54** 

PBW 65 × WL-410 20.56 4.54 7.85 68.29 6.48** 34.15** 920.85 45.57** 32.12** 

DPW-621-50 × WH-416 21.43 7.01 12.40** 64.37 0.96 26.45** 935.27 39.37** 34.18** 

DPW-621-50 × CPAN-1796 20.93 4.51 9.77* 59.86 -5.17** 17.59** 862.17 24.33* 23.70* 

DPW-621-50 × WL-410 21.68 8.24 13.69** 63.62 -0.80 24.97** 812.33 28.42* 16.55 

MLKS-11 × WH-416 20.71 11.16* 8.64 70.53 10.61** 38.55** 982.24 25.09** 40.92** 

MLKS-11 × CPAN-1796 22.11 12.25** 15.98** 69.66 10.36** 36.84** 877.14 11.71 25.84* 

MLKS-11 × WL-410 20.59 4.68 7.99 62.44 -2.64 22.66** 900.92 14.74 29.26** 

KSML-3 × WH-416 21.56 4.07 13.08** 65.42 -2.65 28.51** 886.11 13.61 27.13** 

KSML-3 × CPAN-1796 21.81 5.29 14.41** 66.57 -0.93 30.78** 866.82 11.14 24.36* 

KSML-3 × WL-410 21.19 2.30 11.15* 68.41 1.80 34.38** 943.11 20.92* 35.31** 

PBW-291 × WH-416 20.08 5.68 5.33 67.93 6.53** 33.43** 859.40 28.07** 23.30* 

PBW -291 × CPAN-1796 21.49 9.10* 12.73** 60.43 -4.27** 18.71** 799.44 15.29 14.70 

PBW -291 × WL-410 21.03 6.91 10.30* 63.70 -0.68 25.12** 821.13 28.68* 17.81 

RAJ-2184 × WH-416 22.63 16.69** 18.71** 60.42 -5.25** 18.68** 816.19 21.63* 17.10 

RAJ-2184 × CPAN-1796 21.86 10.96* 14.65** 57.70 -8.59** 13.34** 853.10 23.03* 22.39* 

RAJ-2184 × WL-410 21.96 11.63* 15.16** 53.59 -16.44** 5.26** 772.76 22.16* 10.87 

S.E±  0.84 0.84  0.86 0.86  68.47 68.47 

C.D at 5%  1.71 1.71  1.74 1.74  139.14 139.14 

C.D at 1%  
2.30 2.30 

 
2.34 2.34  

186.81 

 

186.81 
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Table 7: Mean performance of F1 hybrids and extent of heterosis in bread wheat for test weight, biological yield per plant, grain yield per plant 

 

 

 

 

 

Crosses Test weight (g) Biological yield per plant (g) Grain yield per plant (g) 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

Mean Better 

parent 

Standard 

check 

PBW 65 × WH-416 40.02 6.91* -3.29 61.39 16.33** 17.56** 37.24 47.92** 29.07 

PBW 65 × CPAN-1796 35.63 5.34 -13.90** 58.18 10.38** 11.42** 33.42 44.09** 15.85 

PBW 65 × WL-410 39.16 2.72 -5.37* 58.41 18.57** 11.86** 36.08 55.97** 25.06 

DPW-621-50 × WH-416 38.10 1.70 -7.94** 58.89 11.59** 12.77** 35.66 41.64** 23.59 

DPW-621-50 × CPAN-1796 38.35 2.38 -7.33** 61.00 15.71** 16.81** 33.08 42.61** 14.66 

DPW-621-50 × WL-410 39.40 3.34 -4.80 52.41 4.66 0.36 32.12 38.52** 11.35 

MLKS-11 × WH-416 39.42 1.56 -4.75 63.66 4.92* 21.91** 38.71 26.92* 34.19** 

MLKS-11 × CPAN-1796 37.23 -4.07 -10.04** 59.56 -1.83 14.06** 32.69 7.16 13.30 

MLKS-11 × WL-410 37.58 -3.16 -9.18** 57.40 -5.39* 9.93** 33.87 11.04 17.40 

KSML-3 × WH-416 36.89 -1.46 -10.86** 59.46 -0.01 13.86** 32.70 16.12 13.34 

KSML-3 × CPAN-1796 36.18 0.39 -12.57** 55.75 -6.25* 6.75* 31.43 11.62 8.95 

KSML-3 × WL-410 37.85 -0.73 -8.55** 64.42 8.34** 23.36** 35.71 26.81* 23.78* 

PBW-291 × WH-416 37.78 0.91 -8.72** 57.61 7.74** 10.32** 32.56 29.34* 12.86 

PBW -291 × CPAN-1796 40.20 11.44** -2.87 54.07 1.13 3.55 32.15 38.58** 11.43 

PBW -291 × WL-410 38.21 0.23 -7.67** 57.59 7.71** 10.28** 31.40 35.73* 8.84 

RAJ-2184 × WH-416 39.08 4.40 -5.56* 54.17 2.65 3.73 31.91 26.77* 10.62 

RAJ-2184 × CPAN-1796 37.57 10.63** -9.22** 54.00 2.43 3.40 32.36 39.50** 12.17 

RAJ-2184 × WL-410 39.75 4.27 -3.95 58.69 18.74** 12.39** 30.79 33.11** 6.74 

S.E±  0.98 0.98  1.38 1.38  3.19 3.19 

C.D at 5%  1.99 1.99  2.80 2.80  6.48* 6.48 

C.D at 1%  2.68 2.68  3.76 3.76  8.70* 8.70 
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